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The similarity solution describing the motion of converging spherical and cylindrical
shocks is governed by a set of three ordinary differential equations. Previous descrip-
tions of the shock motion have been based on numerical solutions of these differential
equations. In the present paper a study of the singular points of the differential equa-
tions leads to an analytic description of the flow and a determination of the similarity
exponent which is in excellent agreement with the earlier numerical values. Limiting
values of the ratio of specific heats are considered. It is shown that as the ratio tends
to unity the shock becomes ‘freely propagating’ and the first terms in a power series
for the similarity exponent are obtained. Large values of the ratio of specific heats
are briefly considered and provide a further check on the analytic description of this
paper. Finally in the Appendix the condition for the pressure to have a maximum
is clarified and the location of the maximum provides further strong evidence of the
high accuracy of the analytic approach of this paper.

1. Introduction
This paper considers the collapse of cylindrical and spherical shock waves moving

through an ideal gas with a constant ratio of specific heats. The medium is initially
uniform and at rest. In the final stages of the collapse the shock becomes strong
and the pressure ahead of the shock is neglected in comparison with the pressure
behind the shock, leading to a similarity formulation of the problem. In this problem
the similarity variable, which is the ratio of a distance to a particular power of
the time, is not known a priori. The particular power, known as the similarity
exponent, is determined from the solution of a single ordinary differential equation.
The determination of the similarity exponent has been described by many authors,
e.g. Guderly (1942), Butler (1954), Sedov (1959), Stanyukovich (1960) and Zel’dovich
& Raiser (1967), but there is scant description of the flow behind the shock wave in
the literature. This determination of the similarity exponent is outlined in §2.

The main aim of this paper is to provide a simple analytic description of the flow
behind collapsing shock waves. This is achieved by replacing the previous approach
of numerical solution of ordinary differential equations by a theoretical study of
their singular points. This theoretical approach leads, in §3, to an approximate
determination of the similarity exponent which is in agreement with the previously
obtained values correct to four significant figures over the physically relevant range
of ratios of specific heats. These extremely good, though approximate, values of the
similarity exponent lead, in §4, to a simple analytic description of the flow variables
at all points behind the converging shocks. Two particular comparisons can be made
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with the numerical solutions. The first is provided by an integral of the differential
equations, known as the entropy integral. It is shown that the approximate analytic
solution satisfies the entropy integral exactly. The second comparison is provided
by the location of the pressure maximum behind the shock, which exists when the
ratio of specific heats is somewhat less than 3. In the Appendix, the location of the
maximum for the numerical solutions is determined and is found to coincide with the
location of the pressure maximum of the analytic solution presented in this paper.

In an earlier paper (Chisnell 1957) the author presented a ‘freely propagating’
description of collapsing cylindrical and spherical shock waves. In that paper the
motion of the shock was assumed to be unaffected by disturbances in the flow behind
the shock which overtake and modify the motion of the shock. The work was based on
that of Chester (1954) on the motion of a shock in a channel containing a small area
change. A naive integration of Chester’s result produced a description of converging
shock waves which ignored the effect of the overtaking wave on the shock. The 1957
paper gave an explicit approximate formula for the similarity exponent in terms of
the ratio of specific heats of the gas. This result was incorporated by Whitham (1957,
1959) in his theory of shock wave dynamics and this approach is often referred to as
the CCW method in the literature.

In §5 the motion is considered as the ratio of specific heats tends to unity. It is
shown that in this limit the region of disturbance overtaking the shock during its
passage to the origin shrinks to zero so that the shock becomes freely propagating.
An alternative derivation of the 1957 freely propagating law appears as the lowest
order approximation. Finally in §6 the motion is considered for large values of the
ratio of specific heats to provide a further check on the analytic solution of this paper.

2. The similarity formulation
The equations of motion for symmetric adiabatic flow of an ideal gas are

ρt + uρr + ρr1−s(urs−1)r = 0, (2.1a)

ut + uur +
1

ρ
pr = 0, (2.1b)(

∂

∂t
+ u

∂

∂r

)
(ln(p/ργ)) = 0, (2.1c)

where r is the distance from the origin, O, and the space index s is 2 for cylindrical
flow and 3 for spherical flow. The pressure p is replaced by the speed of sound c,
where c2 = γp/ρ, and then non-dimensional variables G, V , Z are introduced with

ρ = ρ0G, u =
r

t
V , c2 =

r2

t2
Z. (2.2a,b,c)

The motion of the shock takes place during negative time, arriving at the origin O
at time t = 0. The equations for G, V , Z are

tGt + VrGr + GrVr = −sVG, (2.3a)

tVt + VrVr +
1

γ

Z

G
rGr +

1

γ
rZr = V − V 2 − 2Z

γ
, (2.3b)

t
Zt

Z
+ rV

Zr

Z
− γ − 1

G
(tGt + VrGr) = 2− 2V . (2.3c)

Self-similar solutions of these equations are sought in terms of the variable ξ = r/R,
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where R(t) is the distance of the shock from the origin at time t(< 0) and G, V , Z
are functions of ξ alone. Changing the independent variables from r, t to ξ, t using

∂

∂r
=

1

R

∂

∂ξ
,

∂

∂t
=

∂

∂t
− ξ Ṙ

R

∂

∂ξ
, (2.4)

where Ṙ denotes dR/dt, it is noted that the t-variable enters the equations only in the
combination tṘ/R arising from the t∂/∂t terms in (2.3). Thus for self-similar solutions
to exist

tṘ

R
= α or R = A(−t)α, (2.5)

where α and A are constants. The resulting equations for V (ξ), G(ξ), Z(ξ) are

ξV ′ + (V − α)ξG
′

G
= −sV , (2.6a)

(V − α)ξV ′ + Z

γ
ξ
G′

G
+

1

γ
ξZ ′ = V − V 2 − 2Z

γ
, (2.6b)

(γ − 1)Zξ
G′

G
− ξZ ′ = −2Z(1− V )

V − α . (2.6c)

These equations have a determinantal solution

ξV ′ =
∆1

∆
, ξ

G′

G
=
∆2

∆
, ξZ ′ =

∆3

∆
, (2.7a,b,c)

where

∆ = −Z + (V − α)2 (2.8)

is the determinant of the left-hand-side coefficients and ∆i is the determinant obtained
by replacing the ith column of ∆ by the right-hand side of (2.6). The three determinants
∆i can each be expressed in terms of ∆ and a particular V -quadratic

Q(V ) = sV (V − α) +
2(1− α)

γ
(α− V )− V (V − 1) (2.9)

as follows:

∆1 = −∆
{
sV − 2(1− α)

γ

}
− (α− V )Q(V ), (2.10a)

∆2 =
2(1− α)
γ(α− V )

∆− Q(V ), (2.10b)

∆3 =
Z

V − α

[
2∆

{
α− V +

1− α
γ

}
+ (γ − 1)(α− V )Q(V )

]
. (2.10c)

As ξ occurs in (2.7) solely as the coefficient of the ξ-derivatives and G does not
occur in the determinants, the system of equations may be decoupled to provide a
single ordinary differential equation

dZ

dV
=
∆3

∆1

(2.11)

and two supplementary equations

1

G

dG

dV
=
∆2

∆1

,
1

ξ

dξ

dV
=

∆

∆1

, (2.12a,b)

which can be solved subsequently when Z(V ) has been determined from (2.11).
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To describe the flow behind the shock, a solution of the equations (2.7) is required
which, at the shock ξ = 1, satisfies the Rankine–Hugoniot conditions for a strong
shock

ρ

ρ0

=
γ + 1

γ − 1
, u =

2

γ + 1
Ṙ, c2 =

2γ(γ − 1)

(γ + 1)2
Ṙ2. (2.13a,b,c)

To incorporate these conditions into the present paper we express the flow variables
of (2.2) in terms of ξ, t and use (2.5) to remove R/t, providing

ρ = ρ0G, u =
Ṙ

α
ξV , p =

ρ0Ṙ
2

γα2
ξ2GZ, c2 =

Ṙ2

α2
ξ2Z. (2.14a,b,c,d)

The shock boundary conditions become

ξ = 1, Gs =
γ + 1

γ − 1
, Vs =

2α

γ + 1
, Zs =

2γ(γ − 1)α2

(γ + 1)2
, (2.15a,b,c,d)

the s-suffix denoting conditions at the shock. Far behind the shock, where r is large,
(2.2) shows that

V (∞) = 0, Z (∞) = 0. (2.16a,b)

In the (V ,Z)-plane, ∆ = 0 is a parabola touching the V -axis at V = α. Equations
(2.15) show that ∆ has the negative value −α2(γ− 1)/(γ+ 1) at the shock ξ = 1. Thus
the solution curve in the (V ,Z)-plane has to cross the parabola in order to reach the
origin, which represents conditions far behind the shock. The solution curve and the
parabola ∆ = 0 are shown in figure 1 for spherical shocks with γ = 1.4. Equations
(2.7) show that at a point on the parabola ∆ = 0 the flow variables will have infinite
slopes unless ∆i simultaneously vanish. Equations (2.10) show that this must occur
at a value of V which is a zero of Q(V ). For a given value of γ there is a value
of the similarity exponent α which provides a solution of (2.11) which starts at the
singular point on ∆ = 0 and passes through the shock point (2.15). The nature of the
singular point is determined at the end of the next section. The iteration required to
find α involves first a choice of one of the two zeros of Q(V ) and then choosing the
positive value of the two possible slopes of the solution curve at the singular point.
The equation may then be integrated from the singular point back to the origin,
which is a nodal point attracting all solution curves, and the solution is completed by
integrating equations (2.12). This description of the numerical determination of the
similarity exponent is based on the formulation of Zel’dovich & Raiser (1967).

3. Determination of the similarity exponent
In this section the behaviour of the differential equation which determines the

similarity exponent is examined at two of its singular points. The equation given in
(2.11) may be written

1

Z

dZ

dV
=

2∆(α− V + (1− α)/γ) + (γ − 1)(α− V )Q

∆(sV − 2(1− α)/γ)(α− V ) + (α− V )2Q
, (3.1)

after using (2.10). By taking note of the correct behaviour of Z at these singular
points, a trial function, ZT , is constructed which when substituted into ∆ in the
right-hand side of (3.1) leads to extremely accurate values of the similarity exponent
α and a simple analytic description of the flow. The iteration required to determine
the similarity exponent α is performed after the integration, rather than before the
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Figure 1. The solution curve Z and the parabola ∆ = 0 are shown for spherical shocks with γ = 1.4.
The solution curve has a singular point at V0, the shock is at Vs and the origin corresponds to
conditions far behind the shock.

integration as in the earlier numerical similarity solutions. It will be shown that the
use of the trial function ZT in ∆ enables the singular behaviour of the solution as it
crosses the parabola ∆ = 0 to be removed, even though the location of the singular
point is not known when the integration is performed.

The first singular point considered is the origin in the (V ,Z)-plane which is at one
end of the range of integration and corresponds to conditions far behind the shock.
Expanding ∆ and Q given in (2.8) and (2.9) as far as the linear terms provides

∆ ∼ α2 − 2αV − Z, Q ∼ 2α(1− α)/γ − V (sα− 1 + 2(1− α)/γ).

Substsitution in (3.1) provides

1

Z

dZ

dV
∼ 2α2

Vα2 + 2Zα(1− α)/γ
which has the solution

V =
2(1− α)
γα

Z + A1Z
1/2. (3.2)

Provided the integration constant A1 is non-zero the leading term for Z in terms
of V is

Z = A2V
2. (3.3)

The second singular point to be considered arises from the factor (α − V ) in the
denominator of (3.1). The boundary condition Vs = 2α/(γ+ 1) given in (2.15c) shows
that the singular point V = α lies outside the range of integration. Near V = α the
limiting form of the equation is

dZ

dV
∼ Z 2(1− α)/γ

(α− V )(sα− 2(1− α)/γ) ,

showing that

Z ∼ A3(α− V )−η, η−1 =
sαγ

2(1− α) − 1. (3.4a,b)
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Removal of the singular behaviour at V = α leads to the differential equation

1

Z

dZ

dV
− η

α− V =
∆(2 + sη) + (γ − 1− η)Q

∆(sV − 2(1− α)/γ) + (α− V )Q
(3.5)

to be used in place of (3.1). Any trial function ZT (V ) which is inserted in ∆ in
the right-hand side of (3.5) and is finite at V = α will result in the Z obtained by
integrating (3.5) having the correct behaviour as V → α. The integration of (3.5)
has to be performed without knowing, a priori, the value of V at which the solution
crosses the parabola ∆ = 0. If this value is V = V0 then Q(V0) = 0 and ZT (V0) must
equal (α− V0)

2. The trial function

ZT = λV 2, λ = (α/V0 − 1)2, (3.6)

has the required value at V0, is finite at V = α and has the behaviour given by (3.3)
for small V .

This trial function is seen from (2.2b,c) to correspond to constant-Mach-number
flow behind the shock. Insertion of the trial function into ∆ in the right-hand side
of (3.5) enables the singular behaviour at V = V0 to be removed as both ∆ and Q
will have the factor (V − V0). As V0 cannot be determined until after the integration
has been performed, the factorization must be performed with V0 as a parameter.
Substitution of (3.6) into the definitions (2.8), (2.9) gives the required forms

∆ = (V − V0)(V (1− λ)− α2/V0), (3.7a)

Q = (V − V0)

(
(s− 1)V − 2α(1− α)

γV0

)
. (3.7b)

Substitution into the right-hand side of (3.5) and removing the (V − V0) factor
leaves a quotient with a quadratic denominator having a zero constant term

V {η(1− sλ) + 2(1− λ) + (s− 1)(γ − 1)} − 2α/V0

(1− sλ)V 2 − αV/V0

. (3.8)

The given forms of the constant term in the numerator and the V -coefficient in the
denominator follow after using the η-definition (3.4b) and (2.9) to express Q(V0) = 0.
After expressing (3.8) in partial fractions equation (3.5) becomes

1

Z

dZ

dV
− η

α− V =
2

V
+

B

V + q
, (3.9a)

B = η + (s− 1)
2λ+ γ − 1

1− sλ , (3.9b)

q =
−α

V0(1− sλ)
. (3.9c)

The integration of (3.9a) is displayed in figure 1 for spherical shocks with γ = 1.4.
A solution of this equation is required which passes through the singular point V0,
Z0 and the shock point Vs, Zs. Integration from V0 to Vs gives

Zs

Z0

=

(
α− V0

α− Vs

)η (
Vs

V0

)2(
Vs + q

V0 + q

)B
as the condition to be satisfied by the parameters α, V0. Substituting Vs, Zs from
(2.15c,d) and Z0 = (α− V0)

2 provides

(α/V0 − 1)2 =
γ(γ − 1)

2

(
γ − 1

(γ + 1)(1− V0/α)

)η (
V0 + q

2α/(γ + 1) + q

)B
. (3.10)
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(a) This paper Exact
γ α/V0 α/(1− α) α/(1− α)

1.2 1.33137 3.11838 3.11769
1.4 1.53064 2.53558 2.53573
5/3 1.78035 2.20895 2.20902
2 2.08607 2.00341 2.00341
3 3.00187 1.75039 1.75036

(b) This paper Exact
γ α/V0 α/(1− α) α/(1− α)

1.2 1.33594 6.20329 6.20269
1.4 1.53008 5.07235 5.07249
5/3 1.76805 4.42366 4.42373
2 2.05445 4.00281 4.00280
3 2.89436 3.45746 3.45766

Table 1. The values of α/(1− α) obtained from equations (3.10) and (3.11) for (a) spherical shocks
and (b) cylindrical shocks. The values are compared with the exact values of the parameter obtained
by integration of the full equation (3.1). The significant figures in agreement with the exact values
are shown in bold and it is seen that there is agreement to at least four significant figures. The
values of α/V0 from equation (3.10) are also given so that the constants in the solution may be
calculated.

The parameters α, V0 are also related by the condition Q(V0) = 0 with Q given in
(2.9). By rewriting the last bracket (V − 1) in (2.9) as ((V − α) + (α− 1)) the quadratic
determination of V0 in terms of α can be replaced by

(s− 1)α

1− α =
1

1− V0/α
+

2

γV0/α
. (3.11)

This explicit determination of α/(1 − α) in terms of V0/α suggests that V0/α be
used as the iteration parameter in the solution of (3.10). For a given V0/α, having
determined α/(1 − α), the parameter α and hence V0 follow and may be inserted in
the right-hand side of (3.10). Putting η = 0 and B = 0 in (3.10) provides a good first
approximation to α/V0 and this choice of α/V0 is discussed in §5. For γ = 1.4 six-figure
accuracy for α/V0 is obtained after just one iteration and the slowest convergence
over the range of γ given in table 1 occurs at γ = 3 where five iterations are needed
for five-figure accuracy. The results for α/V0 and the similarity exponent α/(1 − α)
are given in table 1 and the similarity exponent is compared with the exact values
obtained by numerical integration of the full equation (3.1) for both spherical and
cylindrical shocks.

When γ approaches unity, α/V0 also approaches unity and α/(1−α) becomes large.
Hence α and V0 tend to unity while the second zero of Q(V ) is seen from (3.7b) to
become small. This limit is discussed in §5. As γ increases from unity, the values of
α/(1 − α) and α decrease and the zeros of Q(V ) move closer together. By expressing
Q(V ) given in (2.9) in the form

Q(V )

(s− 1)α2
=

(
V

α
− 1

2

(
1 +

1

β

(
2

γ
− 1

)))2

− 1

4β2

((
β −

(
2

γ
+ 1

))2

− 8

γ

)
(3.12)

where

β = (s− 1)α/(1− α), (3.13)

it is seen that Q(V ) has repeated zeros when β has decreased to the value

β = 2/γ + 1 + (8/γ)1/2 = (1 + (2/γ)1/2)2.

This particular location of the singular point V0 may be expressed as

α/V0 = 1 + (γ/2)1/2. (3.14)
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For the approximate solution of this section the zeros become coincident at γ = 1.870
for spherical shocks and at γ = 1.909 for cylindrical shocks. These four-figure values
agree with the corresponding values obtained by Lazarus (1981) for the full numerical
solution. As γ increases further the zeros of Q(V ) move apart again and the singular
point V0 becomes the smaller of the two zeros. It will be shown in the next section
that the larger zero moves outside the range (0, Vs) before γ has reached 3. When γ
becomes large, the singular point V0 and the shock point Vs both become small. This
limit is discussed in §6.

The transition of the singular point V0 from being the larger to the smaller zero
of Q(V ) produces a change in the nature of the singular point behaviour. In the
literature the singular point is usually referred to as a saddle point, which is true for
γ 6 5/3 when V0 is the larger zero. However, when V0 becomes the smaller zero,
which occurs for γ > 2, the singular point has nodal behaviour. To demonstrate this
result, substitute Z = Z0 + (α − V0)z, V = V0 + v into equation (3.1) and linearize,
yielding

dz

dv
=
v(4e− (γ − 1)g) + 2ez

v(2f − g) + fz
, (3.15)

where

e = (α− V0) + (1− α)/γ, f = sV0 − 2(1− α)/γ, (3.16a,b)

g = (s− 1)V0 − 2α(1− α)/(γV0). (3.16c)

The coefficients e, f remain positive for all γ, and g is seen from (3.7b) to be positive
only when V0 is the larger zero. The solution of (3.15) is

(z − φ1v)
φ1+2−g/f = C(z − φ2v)

φ2+2−g/f, (3.17)

where φ1, φ2 are the roots of the quadratic

fφ2 − (2e− 2f + g)φ− 4e+ (γ − 1)g = 0 (3.18)

and C is a constant. When Q(V ) has repeated zeros, g = 0 and the roots of (3.18) are
φ1 = 2e/f and φ2 = −2. When V0 is the larger zero, g is positive so that the exponents
in (3.17) are of opposite sign producing saddle point behaviour. The required solution
curve with positive slope is z = φ1v. When V0 is the smaller zero, the exponents have
the same sign giving nodal behaviour with many solution curves that are tangential
to z = φ2v with negative slope. The remaining solution curve, which corresponds to
C = 0, is the required solution curve with positive slope, z = φ1v. Thus in both cases
the solution curve Z(V ) has slope (α− V0)φ1 at the singular point.

This exact value for the slope at the singular points provides another comparison
with the approximate theory of this section. Using the trial function ZT , given in (3.6),
in the right-hand side of (3.1) the slope at V0 follows as

(α− V0)
4eα/V0 − (γ − 1)g

2fα/V0 − g
.

When Q(V ) has repeated zeros, both theories give the same expression for the slope
2(α − V0)e/f and over the physical range of γ the slopes are in agreement to three
significant figures for γ 6 2 and to two figures at γ = 3.
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4. The flow field
In the previous section, the similarity exponent α was determined for various γ

by finding a solution of the V ,Z differential equation which passed through the
singular point V0, Z0 = (α − V0)

2 and the shock point Vs, Zs. Having determined the
correct values of α and V0, the supplementary differential equations for G and ξ in
(2.12) are now integrated. These equations also have a singular point at V0 and use
of the trial function ZT given in (3.6) enables the factor (V − V0) to be removed
from the numerators and denominators of the right-hand sides of (2.12). Appropriate
expansions for ∆ and Q are given in (3.7a,b) and the corresponding expansions for
∆1 and ∆2, defined in (2.10a,b) are

∆1 = −(V − V0)V (1− sλ)(V + q),

∆2 = (V − V0)V {(s− 1)(V − α) + 2(1− α)α(1− α/V0)/(γV0)}/(α− V ).

Substitution into (2.12) provides

1

G

dG

dV
=

E

V − α +
D

V + q
,

1

ξ

dξ

dV
= − α

V
+

F

V + q
, (4.1a,b)

where

E =
2(1− α)(1− α/V0)/γ

(1− sλ)V0 − 1
, D =

s− 1

1− sλ − E, F = −q(1− λ) + α2/V0

q(1− sλ) .

This E formula may be simplified by first substituting for λ from (3.6), then using
Q(V0)/V0 = 0 to rewrite the term (s− 1)V0 in the denominator and finally cancelling
a (1− α/V0) factor to give

E =
2(1− α)/γ

sα− 2(1− α)/γ .

Noting the η and q definitions in (3.4b) and (3.9c), the final forms of the constants
are

E = η, D =
s− 1

1− sλ − η, F = α− 1− λ
1− sλ . (4.2a,b,c)

Integration of (3.9a) and (4.1a,b) from the shock ξ = 1 provides

Z

Zs
=

(
V

Vs

)2(
α− Vs
α− V

)η (
V + q

Vs + q

)B
, (4.3a)

G

Gs
=

(
α− V
α− Vs

)η (
V + q

Vs + q

)D
, (4.3b)

ξ =

(
Vs

V

)α(
V + q

Vs + q

)F
, (4.3c)

with Vs, Zs and Gs given in (2.15). Non-dimensional forms of the flow variables follow
from (2.14), (2.15) and (4.3) as

ρ

ρs
=

(
α− V
α− Vs

)η (
V + q

Vs + q

)D
, (4.4a)

u

us
= ξ

V

Vs
=

(
V

Vs

)1−α(
V + q

Vs + q

)F
, (4.4b)

p

ps
= ξ2

(
G

Gs

)(
Z

Zs

)
=

(
V

Vs

)2(1−α)(
V + q

Vs + q

)B+D+2F

. (4.4c)
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Figure 2. The fluid velocity, normalized with respect to its value at the shock, shown as a function
of 1/ξ = R(t)/r for various γ. (a) Spherical shocks, (b) cylindrical shocks.

The monotonic decreasing variable u/us is displayed as a function of 1/ξ with
the help of equation (4.3c) in figure 2(a) for spherical shocks and in figure 2(b) for
cylindrical shocks for various values of γ.

The density increases monotonically behind the shock and has a non-zero limiting
value far behind the shock. The inverse density variable ρs/ρ is displayed in figure
3(a, b) for spherical and cylindrical shocks for various values of γ.

The behaviour of the pressure is more complicated. In the Appendix it is demon-
strated that the exact numerical solution of the differential equations leads to a
monotonic decreasing pressure for both cylindrical and spherical shocks when γ > 3.
Further it is shown that for γ 6 2 the pressure has a single maximum behind the
shock. The same behaviour is exhibited by the analytic solutions presented in this
section. The location of the pressure maximum, when it exists, occurs at the value of
V given by equation (4.4c) as

V =
−2q(1− α)

B + D + 2F + 2(1− α) .
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Figure 3. The inverse density, normalized with respect to its value at the shock, is shown as a
function of 1/ξ for various γ. The density increases monotonically behind the shock and has a finite
value far behind the shock where 1/ξ = 0. (a) Spherical shocks, (b) cylindrical shocks.

After substitution for B, D, F and q this reduces to

V =
2α(1− α)
(s− 1)γV0

. (4.5)

Consideration of the product of the zeros of the quadratic Q(V ) given in (2.9)
shows that the maximum value of the pressure occurs at the second zero of Q(V ),
the first zero being V0, the location of the singular point on ∆ = 0. In the Appendix
it is shown that this value of V also applies to the location of the pressure maximum
in the full numerical solution to the problem, providing further strong evidence of
the accuracy of the present analytic solution. The pressure maximum exists when
the second zero lies in the flow range of V , namely 0, Vs and an inequality for this
to occur is derived in the Appendix. For the approximate theory of this paper the
pressure maximum occurs at the shock at γ = 2.59 for spherical shocks and γ = 2.65
for cylindrical shocks. The normalized pressure is displayed as a function of 1/ξ for
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Figure 4. The pressure, normalized with respect to its value at the shock, shown as a function of
1/ξ for various γ. The pressure has a maximum in the flow behind the shock for values of γ 6 2.
(a) Spherical shocks, (b) cylindrical shocks.

spherical shocks in figure 4(a) and for cylindrical shocks in figure 4(b) for various
γ.

The equations (2.6) do have one integral, known as the entropy integral. The
integral obtained by adding an appropriate multiple of equations (2.6a) to (2.6c) is(

G

Gs

)(1/sα)−(γ−1)/(2(1−α))(
α− V
α− Vs

)1/sα(
Z

Zs

)1/(2(1−α))

ξ1/(α(1−α)) = 1. (4.6)

Although the analytic solution of this section does not satisfy any one of the
equations of motion it does satisfy the entropy integral, providing further evidence
of the accuracy of the analytic solution. To establish this result, equations (4.3) are
substituted into the left-hand side of (4.6), providing powers of V , α− V and V + q.
The V power consists of two equal and opposite terms and the other two powers
may be shown to be zero after using the η definition in (3.4b).
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5. The solution as γ → 1: freely propagating shocks

The motion of the shock has an especially simple form when the ratio of specific
heats tends to unity. This is because the region of disturbance which overtakes the
shock during its passage to the origin shrinks to zero in this limit.

To demonstrate this result we first show that the boundary of the overtaking
disturbance is both a ξ = constant curve and a C characteristic. The C characteristics
satisfy

dr

dt
= u− c, (5.1)

which may be written as

dr

dt
=
Ṙξ

α
(V + Z1/2), (5.2)

after first using (2.2b,c), with the square root for c appropriate to t < 0, and then
using (2.5). The ξ = r/R = constant lines all pass through the origin in the (r, t)-plane
and their slope is

dr

dt
= Ṙξ. (5.3)

The singular point V0, Z0 = (α− V0)
2 on the solution curve of equation (2.11) will

correspond to a particular value of ξ = ξ0, obtained by integrating equation (2.12b)

from Vs to V0. As V0 < α the relation Z0 = (α− V0)
2 may be written Z

1/2
0 = α− V0,

showing that points in the flow which correspond to the singular point V0, Z0 have
the property that the C characteristic (5.2) and the ξ = constant curve (5.3) passing
through them are the same. Thus the curve ξ = ξ0, which passes through the origin,
is a C characteristic and disturbances in the region 1 > ξ > ξ0 overtake the shock
before it reaches the origin.

Equations (2.15c,d) show that Vs → α and Zs → 0 as γ → 1 and the Z(V ) integral
curve remains close to the V -axis. The shock point Vs, Zs and the singular point V0, Z0

coalesce at α, 0 in this limit. When V0 → α, equation (3.11) shows that α→ 1, so that
V0 and hence ξ0 → 1 in the limit. Thus the region of overtaking disturbance shrinks
to zero in this limit and the shock is said to be ‘freely propagating’.

In an earlier paper (Chisnell 1957) the author considered ‘freely propagating’
cylindrical and spherical shock waves, based on a result of Chester (1954) for the
motion of a shock in a channel containing a small area change. The simple approach
of integrating Chester’s result, and in consequence neglecting the disturbance which
overtakes and modifies the path of the shock, led to an explicit relationship between
the shock Mach number and the area of the channel. An alternative derivation of
this result was given later by Whitham (1958) by an application of a characteristic
rule and this result has been used for all γ in many subsequent papers on shock
wave dynamics. For strong shocks the relationship becomes an explicit formula for
the similarity exponent

(s− 1)α

1− α = 1 +
2

γ
+

(
2γ

γ − 1

)1/2

. (5.4)

We now determine the asymptotic form of Z(V ) as γ → 1 and the first three terms
in a series for α in powers of (γ − 1)1/2. An alternative derivation of (5.4) is provided
by an extreme form of the differential equation defining the asymptotic form of Z(V ).
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Equations (3.11) and (3.4b) show that (α− V0) and η are both of the first order in
(1− α)

α− V0 ∼
1− α
s− 1

, η ∼ 2(1− α)
s

. (5.5a,b)

At the singular point V0, Z0 = (α − V0)
2 and at the shock Vs equation (2.15) shows

that

α− Vs ∼
γ − 1

2
, Zs ∼

γ − 1

2
. (5.6a,b)

To relate the small quantities (1− α) and (γ− 1), we first consider the derivative of Z
at the singular point V0, which to the lowest order in (1− α) and (γ− 1) follows from
(3.18) and (3.16) as

dZ

dV
(V0) ∼

4s

(s+ 1)

(1− α)2

(s− 1)2
− (1− α)(γ − 1)

(s+ 1)
,

by noting that the term independent of φ in (3.18) is small. This suggests that the
change in Z over the first-order range

Vs − V0 ∼
1− α
s− 1

− γ − 1

2

is of the third order in (1− α) and (γ − 1) and requires the first-order expression for
Zs and the second-order expression for Z0 to balance, giving

γ − 1

2
∼ (α− V0)

2 ∼ (1− α)2

(s− 1)2
, (5.7)

after using (5.5a). This is the required relationship between the small parameters
(1− α) and (γ − 1) and provides a two-term expansion for α

α = 1− (s− 1)δ, δ =

(
γ − 1

2

)1/2

. (5.8a,b)

As Z increases from Z0 to Zs its slope increases by an order of magnitude to the
value

dZ

dV
(Vs) ∼

2(1− α)
s

(5.9)

due to the presence of the term η/(α−V ) in equation (3.5). The resulting Z behaviour,
Zs(α− Vs)η(α− V )−η , has an increment from V0 to Vs of

(1− α)(γ − 1)

s
ln

(
2(1− α)

(s− 1)(γ − 1)

)
.

Although this result confirms that the change in Z over (V0, Vs) is of the third order
in (1−α) it indicates that higher terms in the α-series (5.8) will contain ln terms in the
coefficients. The presence of the ln terms in the coefficients was discovered in an earlier
paper by the author (Chisnell 1987), using a matched asymptotic expansion approach
which suggested a small power singularity as a possible cause of the ln coefficients.

To determine Z to the third order in (1− α), we note that both terms on the left-
hand side of (3.5) are O(1) at V0 and although they are larger at Vs, their difference
remains O(1). We now show that use of just the first term of the Z-expansion, which
is seen from (5.7) to be (α−V0)

2, enables the right-hand side of (3.5) to be determined
to the same order over V0, Vs. Sustituting Z = (α − V0)

2 into equation (2.8) gives ∆
the second-order form

∆ = (V − V0)(V − V0 − 2(α− V0)), (5.10)
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which combined with equation (3.7b) for Q(V ), enables the factor (V − V0) to be
removed from the right-hand side of equation (3.5). Retaining only the first-order
terms in (1 − α), (α − V0) and η in each of the two expressions in the resulting
numerator and denominator leads to

1

Z

dZ

dV
− η

α− V =
2(V − V0 − 2(α− V0))− η(s− 1)V

sV (V − V0 − 2(α− V0)) + (α− V )(s− 1)V
.

The denominator of the right-hand side is V (V − α − s(α − V0)) and to display the
behaviour of Z near Vs, the second bracket of this denominator and the (α− V ) on
the left-hand side are written in terms of (V − Vs). Expressing the right-hand side in
partial fractions to O(1) over V0, Vs and using equations (5.5)–(5.8) to introduce the
parameter δ gives

1

Z

dZ

dV
− 2(s− 1)δ

s(δ2 + Vs − V )
∼ 2

V
+

2(s− 1)δ

s(V − Vs − sδ)
. (5.11)

Integration from Vs gives the asymptotic form of Z as γ → 1 as

Z

Zs
∼
(
V

Vs

)2(
1 + (Vs − V )/(sδ)

1 + (Vs − V )/δ2

)2(s−1)δ/s

, (5.12)

showing that in this limit Z/Zs is determined directly in terms of γ and is not linked
with the determination of α/V0 and α as occurred in §3. The second term in the
product on the right-hand side is just less than unity over 0, Vs and represents the
modification needed to the trial function ZT in this limit. The denominator in this
term gives Z/Zs the large slope 2(s − 1)/(sδ) at Vs, due to the singularity at V = α,
though Z itself has the small slope given in (5.9). As the expressions for ∆ given
in (5.10) and (3.7a) have a difference of O(δ3), the result (5.12) may alternatively be
derived from equations (3.9).

The parameter α/V0 is derived from (5.12) by substitution of V = V0 and Z =
(α− V0)

2. As (Vs − V0) ∼ δ and Zs/V
2
s ∼ δ2, Z0/V

2
0 follows as(

α

V0

− 1

)2

= δ2

(
(s+ 1)δ

s

)2(s−1)δ/s

.

To determine the next term in the power series for α, expansion for α/V0 gives

α

V0

= 1 + δ +
(s− 1)

s
δ2 ln

(
(s+ 1)δ

s

)
. . .

and equation (3.11) then provides

α = 1− (s− 1)δ + (s− 1)δ2

(
s+ 2− (s− 1)

s
ln

(
(s+ 1)δ

s

))
. . . (5.13)

as the first three terms in the power series for α. The series provides four-figure
agreement with the numerical solution of (3.10) and (3.11) when (γ − 1) is 10−4.

The early result (5.4) can be derived from (5.11) by giving δ its limit value of
zero. This extreme limiting form of Z is the trial function ZT , given in (3.6), as
Z = (α− V0)

2 at V = V0. Use of this result for general γ and requiring Z to have the
value Zs at Vs, defined in equations (2.15), leads to(

α

V0

− 1

)2

=
γ(γ − 1)

2
. (5.14)
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Substitution into (3.11) and noting that α > V0 provides

(s− 1)α

1− α =
1 +

(
1
2
γ(γ − 1)

)1/2(
1
2
γ(γ − 1)

)1/2
+

2

γ

(
1 +

(
1
2
γ(γ − 1)

)1/2
)
,

which becomes (5.4) after some reduction.
We conclude the section by presenting the γ → 1 asymptotic forms of the flow

variables displayed in figures 2, 3 and 4. These may be obtained either by integrating
the subsidiary equations (2.12) for G and ξ in a manner similar to the derivation of
(5.12) from (3.5) or, because the ∆ expressions in (5.10) and (3.7a) agree to O(δ2), as
the limiting forms of equations (4.3c) and (4.4). This leads to

1

ξ
∼
(
V

Vs

)(
1 +

Vs − V
sδ

)(s−1)δ

, (5.15a)

u

us
∼
(
V

Vs

)(s−1)δ (
1 +

Vs − V
sδ

)−(s−1)δ

, (5.15b)

ρ

ρs
∼
(

1 +
Vs − V
δ2

)2(s−1)δ/s(
1 +

Vs − V
sδ

)s−1

, (5.15c)

p

ps
∼
(
V

Vs

)2(s−1)δ (
1 +

Vs − V
sδ

)s−1

. (5.15d)

The γ → 1 limiting form of the normalized velocity displayed in figure 2 remains
just under u/us = 1 and just to the left of 1/ξ = 0 due to the presence of the small
power of V in (5.15b). Near the shock the limiting form crosses the displayed profiles
and reaches the shock with a slope of (s − 1), which is larger than the slopes of the
displayed curves. The inverse density displayed in figure 3 has a slope at the shock
which tends to infinity as 3(s − 1)/δ and the limiting value of the inverse density
tends to zero as ξ becomes large. The pressure displayed in figure 4 has a slope at
the shock of −(s − 1)/δ and the maximum value of the pressure becomes infinitely
large at a ξ value which behaves as (2δ)−1 as γ → 1.

6. The solution as γ →∞
As a final check on the validity of the analytic solution of this paper, a comparison

is made with the exact values of the similarity exponent for large values of γ. There
is some confusion in the literature as Stanyukovich(1960) appears to have misquoted
results for large γ. For cylindrical shocks he quotes α = 0.5 which is the appropriate
value for the line explosion problem. For spherical shocks he quotes α = 3/8 which
when substituted in α/(α − 1) provides an exponent of 0.6 which is close to the
correct value and may have been his intended value. Mishkin & Fujimoto (1978b)
quote values of α to three figures from a report by Lazarus & Richtmyer (1977). In
this short section the exponent is calculated to more figures, confirming the work
of Lazarus & Richtmyer and enabling a comparison to be made with the analytic
description of this paper and the earlier shock wave dynamic result.

When γ becomes large, equations (2.15) show that the shock point Vs, Zs tends
to 0, 2α2 and the solution curve remains close to the Z-axis. Introducing the scaled
variable

v = γV , (6.1)
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Exact This paper CCW

(a) α 0.588289 0.5945 0.547
α/(1− α) 1.428890 1.4664 1.21

(b) α 0.727048 0.7277 0.707
α/(1− α) 2.663649 2.6725 2.41

Table 2. The values of the similarity exponents α and α/(1− α) valid for infinite γ are given in the
first column. These are obtained by finding a solution of equation (6.3) which passes through the
singular point (6.4) and the shock point (6.5). The second column gives the corresponding results
for the approximate solution of this paper obtained by solving the algebraic equations (6.7) and
(6.9). The final column gives the corresponding shock wave dynamics results obtained from (6.10).
(a) Spherical shocks, (b) cylindrical shock.

equations (2.8) and (2.9) show that

∆ = −Z + α2 + O(1/γ), γQ = 2α(1− α) + v(1− sα) + O(1/γ), (6.2)

and equation (3.1) becomes to O(1/γ)

1

Z

dZ

dv
=

2Z − 2α+ v(sα− 1)

Z(sv − 2(1− α))− αv . (6.3)

A solution of this limiting form of the equation is required which passes through
the singular point on ∆ = 0 and the shock point vs, Zs. The singular point is given by
(6.2) as

v0 =
2α(1− α)
sα− 1

, Z0 = α2 (6.4)

and the shock point follows from (2.15c,d) as

vs = 2α, Zs = 2α2. (6.5)

Linear analysis about this singular point provides the value of the derivative as

dZ

dv
=

{
1
4
α(3α− 1)(1 + (1 + 8/(1− α))1/2), s = 3

1
4
α(2α− 1)(1 + (9− 8α)1/2)/(1− α), s = 2

(6.6)

and enables the equation to be integrated numerically starting at the singular point.
An iteration on α determines the solution which passes through the shock point. The
similarity exponent α is given in the first column of table 2, which also lists α/(1− α)
for comparison with table 1.

The analytic solution of this paper can also be used for large γ. Introducing the
scaled v variable into (3.11) provides

(s− 1)α

1− α = 1 +
2α

v0

. (6.7)

For large γ equation (3.4b) shows that η ∼ 0 and equations (3.6), (3.9b,c) give

γq ∼ v0/(sα), B ∼ −2(s− 1)/s, (6.8)

so that the limiting form of (3.10) is

α2

v2
0

=
1

2

(
1 + sα

1 + 2α(sα/v0)

)−2(s−1)/s

. (6.9)
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Eliminating α/v0 from (6.7) and (6.9) provides an equation for α and the solutions
are displayed in the second column of table 2. Thus even in the extreme situation
of infinite ratio of specific heats the analytic solution of this paper is in reasonable
agreement with the exact solution.

Finally the freely propagating, or CCW result given in (5.4), may be compared with
the exact values. The limiting form of (5.4) for large γ is

(s− 1)α

1− α = 1 +
√

2 (6.10)

and the results are shown in the third column of table 2. It is a tribute to this early
result, which is based on (γ − 1) being small, that it is still serviceable for infinite γ.

Appendix
In this Appendix we determine the condition for the pressure obtained in the exact

numerical solution to have a maximum in the flow behind the shock and also the
location of the maximum when it exists.

The sound speed definition shows that

1

p

∂p

∂r
=

1

c2

∂c2

∂r
+

1

ρ

∂ρ

∂r
(A 1)

and equations (2.2a,c) provide

1

p

∂p

∂r
=

2

ξR
+

Z ′

RZ
+

G′

RG
. (A 2)

Using (2.7b,c) for Z ′ and G′ and (2.10b,c) to express ∆2 and ∆3 in terms of ∆ and
Q, it is found that the ∆ terms in the numerator cancel and there results

ξ
R

p

∂p

∂r
= −γQ

∆
. (A 3)

This equation shows that the pressure can have turning points only at zeros of the
quadratic Q(V ). One of these zeros corresponds to the singular point on the Z(V )
integral curve at its crossing of the parabola ∆ = 0. At this point ∂p/∂r is in general
non-zero and equations (3.7) show that it is zero only in the special case of Q(V )
having two equal zeros. Thus the pressure can have at most one turning point and
it will exist in the flow only if the second zero of Q(V ) lies in the range 0, Vs. The
quadratic always has one zero in the range 0, Vs and as Q(0) = 2α(1− α)/γ is positive,
a pressure turning point requires Q(Vs) to be positive. The derivation of (3.11) from
Q(V0) = 0 shows that Q(V ) is a positive multiple of

− (s− 1)α

1− α +
2α

γV
+

α

α− V (A 4)

and subsitution for Vs from (2.15c) shows that Q(Vs) is positive provided

(s− 1)α

1− α <
γ + 1

γ
+
γ + 1

γ − 1
=

(γ + 1)(2γ − 1)

γ(γ − 1)
. (A 5)

Stanyukovich noted that spherical shocks had a pressure maximum for γ = 1.4 but
not for γ = 3. Lazarus (1981) demonstrated that a pressure maximum exists for values
of γ less than the critical γ at which Q(V ) has equal roots, namely 1.870 for spherical
shocks and 1.909 for cylindrical shocks. The available numerical results show that
the inequality (A 5) is satisfied, and a pressure maximum exists for γ 6 2 for both
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cylindrical and spherical shocks. For γ > 3 the maximum does not exist and at some γ
between 2 and 3 the maximum occurs at the shock and then the second zero of Q(V )
moves outside the flow range. For the approximate theory of this paper the inequality
is satisfied for γ 6 2.59 for spherical shocks and γ 6 2.65 for cylindrical shocks.

When the pressure turning point exists it is a maximum. In §2 it was shown that
∆(Vs) is negative, so when Q(Vs) is positive equation (A 3) shows that ∂p/∂r at the
shock is positive, the pressure rising to a maximum before becoming small for large r.

Mishkin & Fujimoto (1978b) derived equation (A 5) as the condition for two pos-
sible stationary points in the pressure. Postulating that the pressure should have at
most one turning point they determined the similarity exponent by requiring the two
stationary points to coalesce. As explained above, one of the zeros of Q(V ) does not
lead to a stationary point in the pressure and thus their reasoning is flawed as was
pointed out by Lazarus (1980). Over the physical range of γ the zeros of Q(V ) are
fairly close together and as a consequence a reasonable estimate of the similarity
exponent is obtained in this manner. Yousaf (1986) demonstrated that the estimate
of Mishkin & Fujimoto is equivalent to the first approximation of Stanyukovich in
his iterative solution of the differential equations.

The author is indebted to Dr J. H. Karran for the technical preparation of the
paper and to Dr G. Hall for the numerical solution of the differential equation (6.3).
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